If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+77y=0
a = 9; b = 77; c = 0;
Δ = b2-4ac
Δ = 772-4·9·0
Δ = 5929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5929}=77$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(77)-77}{2*9}=\frac{-154}{18} =-8+5/9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(77)+77}{2*9}=\frac{0}{18} =0 $
| 64=24x | | 24-3x=12+9x. | | 40=8y-8-3y | | 27=v/3+9 | | -6+2n=-3(-8n+2)-3n | | i+75+i=20+i+-100 | | 2m^2=-3m | | c/7+49=59 | | 37-2x=13+10x | | 10x^2+37=0 | | 2(x-3)=25 | | x÷5=6 | | 170+0.25x=380 | | 7x•6=5(10x-4) | | 24+5p=89 | | c7− -49= 59 | | 12+6b=48 | | (20x-150)+6x=6×11 | | 120=2x*2+2x | | 5r+5=100 | | 10.410+2.65x=20x | | -76=20+4v | | 120=2x^2+2x | | 9n-14+2n=5+11n | | 7r+4=5(r-2) | | h/5+-23=-18 | | 25/40=75.5/x | | y/9+63=67 | | 44(2a+3)=-3(a-1)+31 | | 2210=26(p+30) | | 0.67/x=0.9/12 | | 4(3x+4)+2(x-3)=6 |